



FluidControl

# Off-line cooler BNK ATEX-2GD

Drives and hydraulic aggregates are also used in explosive areas in machine construction or raw material production.

In hydraulic systems oil transfers power and motion, in drives it's a vital lubricant. Both as a power transfer medium and lubricant oil is heated by friction losses during operation. Oil/air coolers stabilise the temperature and are indispensable for systems and drives for consistent power. The temperature further affects the ageing behaviour and the life of oils.

BNK ATEX 2GD series coolers are suitable for use in zones 1 (gas) and 21 (dust) and temperature class 4. In addition to adequately protected drive motors they have stainless steel fan housings.

To minimise the negative fluctuating oil flow has on the cooler design with varying ambient air temperatures, the BNK ATEX series features a built-in gerotor pump to circulate the oil

ATEX area of application: up to zone 1 and zone 21 T4

Easy to maintain design

System-compatible cooling matrix / flow rate ratio

Low noise emission

Rugged cooling matrix

High suction pump

Compact installation dimensions



#### Introduction and description

#### Why coolers?

In many cases, installing an off-line cooler is not only an emergency solution, but also the best solution with respect to mechanics and economics. Oftentimes off-line filtration can also be incorporated quite effectively.

Since a bypass also always requires installation of a separate circulation pump, it's reasonable to combine it with the motor already installed for the fan.

The BNK series is a tiered line of oil/air coolers with circulation pump directly flange-mounted. The cooler size and pump flow rate are coordinated for performance grades compatible with the system. The gerotor pump ensures low noise emission for the entire aggregate.

#### Why Bühler?

When we developed the BNK series, we incorporated our years of experience in designing and selling oil/air coolers. Especially the fatigue life of the cooling matrix was a focus during development.

The cooling matrix can easily be removed from the fan case for maintenance without uninstalling the fan or motor.

If our comprehensive standard range of products does not include the right solution for your application, we will gladly develop a custom solution for you.

Use the data in this leaflet to determine a suitable cooler for your application.

### Construction and application

The BNK consists of the following components:

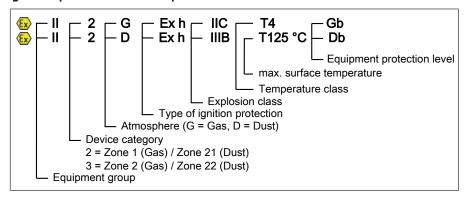
- Cooling matrix
- Fan case with mounting rails
- Blower and pump unit consisting of AC motor, pump, fan, protective/mounting grate and motor bracket

The cooling matrix and fan/pump unit can be removed from the fan case individually without having to uninstall other components

The BNK series cooling matrix are made from aluminum. The coolers are designed for use in hydraulic circuits.

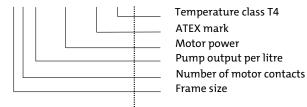
We also offer cooling matrix bypass versions (see type code).

#### **ATEX mark**


# ATEX marking on standard equipment

The ATEX mark depends on the version of the equipment and provides information on equipment category, equipment group, ex-atmosphere, ignition protection type. Please refer to the chart below for possible and complete markings.

| Version for | Marking                    | Explanation                                           |  |  |  |  |  |  |
|-------------|----------------------------|-------------------------------------------------------|--|--|--|--|--|--|
| Gas         | II 2G Ex h IIC T4 Gb       | Zone 1, 2 (IIC hydrogen only)<br>Temperature class T4 |  |  |  |  |  |  |
| Gas         | II 2G Ex h IIC T3 Gb       | Zone 1, 2 (IIC hydrogen only) Temperature class T3    |  |  |  |  |  |  |
| Dust        | II 2D Ex h IIIB T125 °C Db | Zone 21, 22<br>max. surface temperature 125 °C        |  |  |  |  |  |  |
| Dust        | II 2D Ex h IIIB T150 °C Db | Zone 21, 22<br>max. surface temperature 150 °C        |  |  |  |  |  |  |


# **BNK ATEX-2GD**

# Ignition protection mark explanation



### Model key

### BNK 4.4-30-0.75kW-ATEX-T4-IBx



BNK 4.4-30-0.75kW-ATEX-T4-IBx

If a bypass is desired, the information is added to the to the type designation:

| Bypass version | AB<br>IBx<br>ITB<br>ATB | (BNK 2-7)<br>(BNK 3-7)<br>(BNK 3-7)<br>(BNK 2-7) | external bypass internal bypass internal temperature-dependent bypass 2 bar / 45 °C external temperature-dependent bypass 2 bar / 45 °C bypass 2 bar / 45 °C |
|----------------|-------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | X                       |                                                  | bypass value 2 bar, 5 bar, 8 bar                                                                                                                             |

#### Technical data

#### **Technical Data**

| Cooling battery:                                                 | Aluminium, RAL 7001, painted                                         |
|------------------------------------------------------------------|----------------------------------------------------------------------|
| Ventilation box, safety guard and motor brackets:                | Stainless steel 1.4401, unpainted                                    |
| Fan hub:                                                         | Aluminium die casting                                                |
| Motor housing:                                                   | Aluminium die casting                                                |
| Motor flanges:                                                   | Grey cast iron                                                       |
| Pump:                                                            | Anodised and impregnated aluminium, sintered steel                   |
| Operating fluids:                                                | Mineral oils per DIN 51524<br>Gear oil per DIN 51517-3               |
| Operating pressure, static:                                      | 15/28/42 L/min – max. 6 bar<br>58/86 L/min – max. 8 bar              |
| Suction pressure:                                                | max0.4 bar                                                           |
| Operating oil temperature:                                       | max. 80 °C                                                           |
| max. viscosity:                                                  | 100 cSt medium viscosity (see viscosity charts), higher upon request |
| Ambient temperature:                                             | -15 to 40 °C                                                         |
| Electric motors (others available upon request)                  |                                                                      |
| Voltage / frequency:                                             | 230 / 400 V - 50 Hz ± 5 %<br>277 / 480 V - 60 Hz ± 5 %               |
| Thermal stability:                                               | Class of insulation F,<br>utilisation per class B                    |
| Colour:                                                          | RAL 2004                                                             |
| Protection class:                                                | IP 65                                                                |
| The motors comply with standards IEC 60034, IEC 60072, IEC 60085 |                                                                      |
|                                                                  |                                                                      |

# Please also observe the operating manual for the motor!



# Basic data BNK ATEX-T4 (at a frequency of 50 Hz)

| Part no.*     | Cooler type       | spec. cool-<br>ing power<br>kW/K | Cooling<br>power at<br>ETD =<br>40 K (kW) | max. circu-<br>lation rate<br>(I/min) | Power output<br>Poles<br>Rated current<br>at 400 V | Weight<br>(kg) | Capacity<br>(1) | Noise<br>emission<br>db(A)** |
|---------------|-------------------|----------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------------------|----------------|-----------------|------------------------------|
| 3602401ATEXT4 | BNK 2.4-15-0.75kW | 0.07                             | 2.8                                       | 15                                    | 0.75 kW / 4 / 1.7 A                                | 45             | 1.3             | 66                           |
| 3602402ATEXT4 | BNK 2.4-30-0.75kW | 0.10                             | 4.0                                       | 28                                    | 0.75 kW / 4 / 1.7 A                                | 48             | 1.3             | 66                           |
| 3603401ATEXT4 | BNK 3.4-15-0.75kW | 0.12                             | 4.8                                       | 15                                    | 0.75 kW / 4 / 1.7 A                                | 50             | 1.8             | 71                           |
| 3603402ATEXT4 | BNK 3.4-30-0.75kW | 0.19                             | 7.6                                       | 28                                    | 0.75 kW / 4 / 1.7 A                                | 53             | 1.8             | 71                           |
| 3604407ATEXT4 | BNK 4.4-40-1.5kW  | 0.27                             | 10.8                                      | 42                                    | 1.5 kW / 4 / 3.3 A                                 | 50             | 2.3             | 73                           |
| 3604404ATEXT4 | BNK 4.4-90-2.2kW  | 0.30                             | 12.0                                      | 86                                    | 2.2 kW / 4 / 4.4 A                                 | 75             | 2.3             | 73                           |
| 3605414ATEXT4 | BNK 5.4-90-2.2kW  | 0.44                             | 17.8                                      | 86                                    | 2.2 kW / 4 / 4.4 A                                 | 87             | 3.1             | 79                           |
| 3606613ATEXT4 | BNK 6.6-60-2.2kW  | 0.52                             | 20.8                                      | 58                                    | 2.2 kW / 6 / 5.1 A                                 | 116            | 4.1             | 74                           |
| 3607414ATEXT4 | BNK 7.4-90-3.0kW  | 0.84                             | 33.6                                      | 86                                    | 3.0 kW / 4 / 5.9 A                                 | 114            | 5.4             | 89                           |

<sup>\*</sup>Cooler models BNK2.4-15 to BNK 4.4-90 operate at 50/60 Hz, BNK 5.4-90 to BNK 7.4-90 at 50 Hz (60 Hz models available upon request).

#### Calculation example and nomenclature

 $\begin{array}{ll} \textbf{t}_{\text{\"{O}E}} \left[ ^{\circ} \textbf{C} \right] & \text{Inlet oil temperature} \\ \textbf{t}_{\text{LE}} \left[ ^{\circ} \textbf{C} \right] & \text{Inlet air temperature} \end{array}$ 

ETD [K] Temperature differential: ETD =  $t_{OE}$  -  $t_{LE}$ 

 $P_{\text{spez}}[kW/K]$  specific cooling performance (see performance curves):  $P_{\text{spez}} = P/ETD$ 

P [kW] Cooling performance in kW

Q[l/min] Oil flow rate

 $C_{\ddot{o}l}[kJ/kgK]$  Specific heat capacity of the oil (approx. 2.0 kJ / kgK)

 $\varsigma$  [kg/dm<sup>3</sup>] Gravity of oil  $\approx$  0.9 kg/dm<sup>3</sup>

#### Calculation example

Assumptions:

Tank capacity (V) approx. 200 L Start up temperature of oil ( $T_1$ ) 15 °C ( $\approx$  288 K)

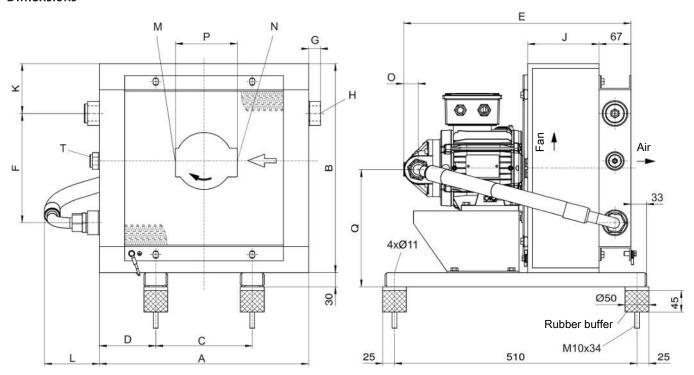
Oil heats up in approx.

t = 25 min. (1500 s) to  $(T_2)$  45 °C ( $\approx$  318 K)

Required oil temperature  $(\mathbf{t}_{OE})$  60 °C Inlet air temperature  $(\mathbf{t}_{IE})$  30 °C

#### Calculation:

1. Calculating P from the tank warming


$$P = \frac{V \cdot \varsigma \cdot c_{Oil} (T_2 - T_l)}{t} = \frac{200 \text{ I} \cdot 0.9 \frac{\text{kg}}{\text{I}} \cdot 2 \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \cdot (318 \text{ K} - 288 \text{ K})}{1500 \text{ s}} = 7.2 \text{ kW}$$

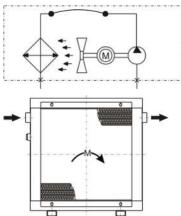
- 2. ETD =  $t_{\ddot{o}E}$   $t_{LE}$  = 60 °C 30 °C = 30 K
- 3. Determining the cooler size:  $P_{spez} = P / ETD = 7.2 \text{ kW} / 30 \text{ K} = 0.24 \text{ kW/K}$
- 4. Select a cooler from the basic data with  $P_{\text{spez}}$  0.24 kW/K. There is one option: BNK 3.4 with 30 L pump

<sup>\*\*</sup>DIN EN ISO 3744, Class 3

# BNK ATEX-2GD

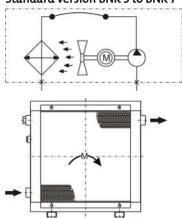
# **Dimensions**




#### Т Connection G $\frac{1}{2}$ for temperature switch

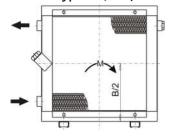
| Туре              | Α   | В   | С   | D     | E   | F   | G    | Н        | J   | K   | L   | M     | N      | 0  | P   | Q   |
|-------------------|-----|-----|-----|-------|-----|-----|------|----------|-----|-----|-----|-------|--------|----|-----|-----|
| BNK 2.4-15-0.75kW | 370 | 370 | 203 | 83.5  | 455 | -   | 25   | 2x G1    | 125 | 106 | 119 | G1    | G1 1/4 | 30 | 130 | 212 |
| BNK 2.4-30-0.75kW | 370 | 370 | 203 | 83.5  | 453 | -   | 25   | 2x G1    | 125 | 106 | 119 | G1    | G1 1/4 | 30 | 130 | 212 |
| BNK 3.4-15-0.75kW | 440 | 440 | 203 | 118.5 | 480 | 230 | 25   | 3x G1    | 150 | 105 | 119 | G1    | G1 1/4 | 30 | 130 | 247 |
| BNK 3.4-30-0.75kW | 440 | 440 | 203 | 118.5 | 478 | 230 | 25   | 3x G1    | 150 | 105 | 119 | G1    | G1 1/4 | 30 | 130 | 247 |
| BNK 4.4-40-1.5kW  | 500 | 500 | 203 | 148.5 | 590 | 230 | 25   | 3x G1    | 175 | 104 | 119 | G1    | G1 1/4 | 30 | 130 | 277 |
| BNK 4.4-90-2.2kW  | 500 | 500 | 203 | 148.5 | 692 | 230 | 25   | 3x G1    | 175 | 104 | 135 | G11/4 | G1 1/2 | 53 | 135 | 277 |
| BNK 5.4-90-2.2kW  | 580 | 580 | 356 | 112   | 718 | 305 | 23.5 | 3x G1    | 200 | 100 | 134 | G11/4 | G1 1/2 | 53 | 135 | 317 |
| BNK 6.6-60-2.2kW  | 700 | 700 | 356 | 172   | 845 | 410 | 9.5  | 3x G11/4 | 225 | 110 | 132 | G11/4 | G1 1/2 | 53 | 135 | 377 |
| BNK 7.4-90-3.0kW  | 700 | 840 | 356 | 172   | 792 | 590 | 9.5  | 3x G11/4 | 250 | 91  | 132 | G11/4 | G1 1/2 | 53 | 135 | 447 |

# **BNK ATEX-2GD**


### Functional diagram

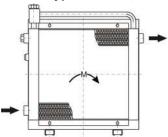
#### Standard version BNK 2




always on the opposite side.

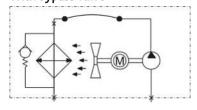
#### Standard version BNK 3 to BNK 7



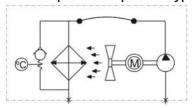

The oil inlet is on the left of the cooling battery. The oil outlet is The oil inlet is on the bottom left of the cooling battery. The second connection at the top must be closed. The oil outlet is always on the opposite side.

### Internal bypass IB/ITB (BNK 3-7)




battery. The connection on the opposite side must be closed.

# External bypass AB/ATB (BNK 2-7)




The oil inlet and outlet is always on the same side of the cooling The oil inlet is always at the bottom left of the cooling battery. The second connection must be closed. The oil outlet is always on the opposite side.

## With bypass valve



## With temperature-dependent bypass valve





available at: www.atphydraulik.com info@atphydraulik.com